

Name:			PUID		
Instructor (circle one):			Evidence Matangi Meeting Days/Time	Timothy Reese	Halin Shin
	O T/Th 9:00AM-1	0:15AM	O MW 1:30PM-2:45PM		
	O MWF 11:30AM	-12:20PM	O MWF 12:30 PM-1:20PM	O MWF 1:30 PM-2:20	PM
	○ MWF 2:30 PM-	3:20PM	○ MWF 3:30-4:20PM ○ M V	NF 3:30PM-4:20PM	○ Online

As a boilermaker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - we are Purdue.

Instructions:

- 1. Please write your name and PUID clearly on every odd page.
- 2. Write your work in the box. Do not run over into the next question space.
- 3. The only materials that you are allowed during the exam are your **scientific calculator**, **writing utensils**, **erasers**, **your crib sheet**, and **your picture ID**. Colored scratch paper will be provided if you need more room for your answers. Please write your name at the top of that paper also.
- 4. The crib sheet can be a handwritten or typed double-sided 8.5in x 11in sheet.
- 5. If you share your calculator without permission or have a cell phone at your desk, you will get a **zero** on the exam. Do not take out your cell phone until you are next in line to submit your exam.
- 6. The exam is only 60 minutes long so there will be no breaks during the exam. If you leave the exam room, you must turn in your exam, and you will not be allowed to come back.
- 7. For free response questions you must show ALL your work to obtain full credit. An answer without showing any work may result in zero credit. If your work is not readable, it will be marked wrong. Remember that work must be shown for all numbers that are not provided in the problem or no credit will be given for them. All explanations must be in complete English sentences to receive full credit.
- 8. All numeric answers should have **four decimal places** unless stated otherwise.
- 9. After you complete the exam, please turn in your exam as well as your table and any scrap paper that you used. Please be prepared to **show your Purdue picture ID**.
- 10. You are expected to uphold the honor code of Purdue University. It is your responsibility to keep your work covered at all times. Anyone caught cheating on the exam will automatically fail the course and will be reported to the Office of the Dean of Students.
- 11. It is strictly prohibited to smuggle this exam outside. Your exam will be returned to you on Gradescope after it is graded.

Your exam is not valid without your signature below. This means that it won't be graded.
I attest here that I have read and followed the instructions above honestly while taking this exam and that the work
submitted is my own, produced without assistance from books, other people (including other students in this class),
notes other than my own crib sheet(s), or other aids. In addition, I agree that if I tell any other student in this class
anything about the exam BEFORE they take it, I (and the student that I communicate the information to) will fail the
course and be reported to the Office of the Dean of Students for Academic Dishonesty.
·

Signature of Student:

Version: V1 2

You may use this page as scratch paper. The following is for your benefit only.

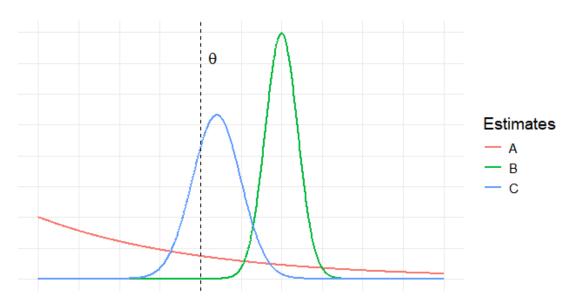
Question Number	Total Possible	Your points
Problem 1 (True/False) (2 points each)	12	
Problem 2 (Multiple Choice) (3 points each)	15	
Problem 3	27	
Problem 4	28	
Problem 5	23	
Total	105	

The rest of this page can be used for scratch work

Version: V	1 Naı	me:	_ PUID:	3
	in the		ns. Indicate the correct answer by complet ir answer by any other way, you may be ma	
			sample from a Cauchy distribution , wance. (i.e., $E[X_i]$ and $Var(X_i)$ are not f	
①	or (F)	Performing a one-sample hypoth if the sample size (n) is sufficient	esis test for the population mean $(\pmb{\mu})$ is tly large.	s valid
		engths of pregnancies are normal eviation of 15 days.	ly distributed with a mean of 268 days a	and a
(T) (or (F)	length is less than 265 is larger	mly selected pregnant woman's pregna than the probability that the mean preg pregnant women is less than 265.	
		perimental design, researchers of ne response variable alongside the	ten encounter extraneous variables tha e factor of interest.	ıt may
①	or (F)	In a Randomized Block Design (Finterest, while randomization cor	RBD), blocks are used to control the fac atrols extraneous variables.	ctor of
1.4	. A res	earcher conducts a hypothesis tes	st and obtains a $m{p}$ -value of 0.03.	
① 0	or (F)	This means there is a 3% probab	oility that the null hypothesis is true.	
	. A 95 data	% confidence interval for the popι	ılation mean μ is constructed from sam	ple
① (or (F)	A sample mean \overline{x} falls within the samples from the population.	95% confidence interval for all possible	е
		earcher wants to estimate the ave orhoods.	rage income in a city with diverse	

① or ⑥ In a stratified random sample, the city is divided into neighborhoods (strata),

residents within those neighborhoods are surveyed.


and then a few complete neighborhoods are randomly selected and all

Version: V1

2. (15 points, 3 pts each) Multiple Choice Questions. Indicate the correct answer by completely filling in the appropriate circle. If you indicate your answer by any other way, you may be marked incorrect. For each question, there is only one correct option letter choice unless specified.

4

- **2.1.** A student proposes an estimator for an unknown parameter θ the estimator $\hat{\theta}$ has expected value $E[\hat{\theta}] = \left(\frac{n}{n-1}\right)\theta + 5$, where n is the sample size. What is the exact bias (for finite n) and the asymptotic bias as $n \to \infty$ of this estimator?
- \triangle Exact bias = 5; Asymptotic bias = 0
- **B** Exact bias = $\left(\frac{1}{n-1}\right) \cdot \theta$; Asymptotic bias = 5
- **©** Exact bias = $\left(\frac{1}{n-1}\right) \cdot \theta$ + 5; Asymptotic bias = 5
- **(D)** Exact bias = $\left(\frac{1}{n-1}\right) \cdot \theta + 5$; Asymptotic bias = 0
- **E** Exact bias = $\left(\frac{n}{n-1}\right) \cdot \theta$ + 5; Asymptotic bias = θ
- **2.2.** Three estimators, $\hat{\theta}_A$, $\hat{\theta}_B$, $\hat{\theta}_C$, are constructed for an unknown target parameter θ , and their sampling distributions are visualized in the graph below. Which of the following statements is **TRUE** about the estimators?

- $igain B_B$ is preferred over $oldsymbol{\widehat{ heta}}_A$ because $oldsymbol{\widehat{ heta}}_B$ has a smaller variance.
- $\widehat{\boldsymbol{\theta}}_{A}$ is preferred over $\widehat{\boldsymbol{\theta}}_{C}$ if $\widehat{\boldsymbol{\theta}}_{A}$ has a smaller bias.
- $\widehat{\mathbf{C}}$ $\widehat{\boldsymbol{\theta}}_{\boldsymbol{C}}$ is preferred over $\widehat{\boldsymbol{\theta}}_{\boldsymbol{A}}$ even if $\widehat{\boldsymbol{\theta}}_{\boldsymbol{A}}$ has a smaller bias.
- \bigcirc On repeated samples, $\widehat{\boldsymbol{\theta}}_{A}$ values hardly vary around the true parameter.
- The best estimate can be determined only after obtaining realized values.

Version: V1 Name:	 PUID:	 5

- **2.3.** Two fertilizers are tested on different plots to compare their effects on crop yield. Summary statistics: $n_1 = 22$, $s_1 = 19.5$ kg/hectare and $n_2 = 20$, $n_2 = 4.7$ kg/hectare. Which statistical inference procedure is most appropriate for comparing mean yields?
- $igatesize{A}$ One-sample t-procedures
- **B** Two-sample paired *t*-procedures
- Pooled two-sample independent *t*-procedures
- Welch two-sample independent *t*-procedures
- **2.4.** A researcher wants to test the effect of a new type of feed on the weight gain of chickens. They have 100 chickens, but they are housed in 10 different coops (10 chickens per coop). The researcher knows that conditions (like temperature and lighting) vary slightly between coops, which might affect weight gain. To account for this, the researcher randomly assigns 5 chickens within each coop to the new feed and the other 5 to the standard feed.

Which experimental design technique is demonstrated by separating the chickens by coop before assigning the feed?

- A Completely Randomized Design
- B Randomized Block design
- © Simple Random Sample
- Matched Pairs Design
- E Stratified Random Sampling
- **2.5.** Chloride deposits are markers for early Mars' aqueous past with important implications for our understanding of Mars' climate and habitability. Purdue scientists are in the process of investigating high-resolution image surfaces of 33 chloride deposits from the southern highlands of Mars. Researchers from a different university have claimed that the mean diameter of chloride deposits is 1650m with the standard deviation of 779.42m. Studies of geological features suggest that the diameters of natural deposits tend to follow approximately symmetric distributions. Based on the Central Limit Theorem and assuming the other researchers' claim correctly describes the population, which of the following statements is **incorrect**?
- lack A The standard deviation of the sampling distribution of \overline{X} for Purdue investigations should be 779.42m.
- f B The mean of the sampling distribution of f X for Purdue investigations is 1650m.
- \bigcirc The sampling distribution of \overline{X} for Purdue investigations is approximately normal.
- We cannot assume the population distribution of deposit diameters is exactly normal.

Version: V1 6

Free Response Questions 3-5. Show all work, clearly label your answers, and use four decimal places.

3. (27 points) A coffee company is testing a new, faster roasting machine. The old machine roasts beans to a target mean moisture level of 8.0 units. The company suspects the new machine **(N)** produces a different mean moisture level than the old machine **(O)**.

They conduct an experiment. They take 16 batches of the same type of green coffee bean. For each batch, they split it in half, roasting one half with the new machine and the other half with the old machine. The moisture level for each roasted half is recorded.

The company calculates the difference for each batch: $D = Moisture_N - Moisture_0$. The data for the 16 differences yields sample mean difference 0.25 units and standard deviation of differences 0.60 units. The researchers have verified that the distribution of differences is approximately normal.

- a) (2 points) Which testing procedure is appropriate for this experiment?
 - A Two-sample independent t-test
 - B Two-sample paired t-test
- **b)** (4 points) Explain what characteristic(s) in the experimental design motivated your choice of testing procedure in part a).

 choice of testing procedure	e iii pait a) .	

C) (2 points) Provide the first two steps of the four-step hypothesis testing procedure.

d) (10 points) Calculate the test statistic for this test. Show your work.

- **e)** (3 points) Select the appropriate code to compute the p-value below.
 - Apt(test statistic, df = 15, lower.tail = TRUE)
 - B 2*pt(abs(test_statistic),df = 15,lower.tail = TRUE)
 - © 2*pt(abs(test statistic), df = 15, lower.tail = FALSE)
 - pt(test statistic,df = 15,lower.tail = FALSE)
 - pt(test statistic, df = 25.8734, lower.tail = TRUE)
 - (F) 2*pt(abs(test statistic), df = 25.8734, lower.tail = TRUE)
 - G 2*pt(abs(test_statistic),df = 25.8734,lower.tail = FALSE)
 - pt(test_statistic,df = 25.8734,lower.tail = FALSE)

Version: V1 8

f) (6 points) The p -value for the correct test was found to be 0.1805. Using a significance level of $\alpha = 0.1$, state your formal decision and write a conclusion in the context of the problem.	า
4. (28 points) Jamie owns a small cranberry farm that primarily grows the Stevens variety which is known for being sweeter and less tart than Early Black. Recently, he planted a small patch of Early Black cranberries for his daughter, who loves tart berries. After a fee years, some regular customers have claimed that the Stevens cranberries have become more tart. Jamie wants to test whether the presence of Early Black cranberries has caused an increase in tartness of his cranberries. Industry standards indicate that pH measurement from Stevens cranberry batches have an average pH of 2.6 with a standard deviation of 0.3. Research indicates that most people can detect a pH change of 0.2 (lower pH = more tart).	ew ne
a) (2 points) Provide the first two steps of the four-step hypothesis testing procedu	re.

Version: V1	Name:	PUID:	

b) (2 points) Identify the mean and standard deviation of the sampling distribution of \overline{X} under the null and alternative hypotheses to detect a pH change of 0.2. Since the sample size is currently unknown you may use n to represent it.

9

Under null:
$$\bar{X} \sim N(\mu_0 = , \sigma_{\bar{X}} =)$$
 Under alternative: $\bar{X} \sim N(\mu_a = , \sigma_{\bar{X}} =)$

C) (10 points) Calculate the minimum sample size required to achieve 90% statistical power for detecting a pH difference of 0.2 in the direction that would indicate increased tartness at α = 0.04. Show your work and clearly identify both: (i) the critical z-value for your significance level, and (ii) the critical z-value for your desired power.

> qnorm(0.01, lower.tail = FALSE) [1] 2.326348	> qnorm(0.02, lower.tail = FALSE) [1] 2.053749
> qnorm(0.04, lower.tail = FALSE) [1] 1.750686	> qnorm(0.05, lower.tail = FALSE) [1] 1.644854
> qnorm(0.1, lower.tail = FALSE) [1] 1.281552	> qnorm(0.2, lower.tail = FALSE) [1] 0.8416212

Version: V1

d) (8 points) Assume Jamie collects a random sample of 25 cranberry batches and measures the average pH of each batch. Determine the cutoff pH value $(\overline{x}_{\text{cutoff}})$ corresponding to a significance level $\alpha=0.04$. Assume the population standard deviation remains $\sigma=0.3$ (unchanged from the industry standard). Show your work.

> qnorm(0.01, lower.tail = FALSE) [1] 2.326348	> qnorm(0.02, lower.tail = FALSE) [1] 2.053749
> qnorm(0.04, lower.tail = FALSE) [1] 1.750686	> qnorm(0.05, lower.tail = FALSE) [1] 1.644854
> qnorm(0.1, lower.tail = FALSE) [1] 1.281552	> qnorm(0.2, lower.tail = FALSE) [1] 0.8416212

- **e)** (3 points) Which of the following R code correctly computes the statistical power of the test?
 - A pnorm((cutoff-2.6)/0.3, lower.tail = TRUE)
 - B pnorm((cutoff-2.6)/0.06, lower.tail = TRUE)
 - © pnorm((cutoff-2.6)/0.06, lower.tail = FALSE)
 - pnorm((cutoff-2.4)/0.3, lower.tail = FALSE)
 - pnorm((cutoff-2.4)/0.06, lower.tail = TRUE)
 - pnorm((cutoff-2.4)/0.06, lower.tail = FALSE)

f)	(3 points) Which of the following interventions will improve the statistical power of the test, assuming all other factors remain constant? Select all that apply. (A) Plant more Early Black cranberries on the farm.
	(B) Randomly sample more bags of cranberries from the farm.
	Move Early Black bushes to a greenhouse with its own beehive.
	① Use a more precise pH measuring device.
produ 27.3 li mean the mi	ctive provinces (States) are Limpopo and Mpumalanga. Limpopo cows average ters of milk a day, with a standard deviation of 2.4 liters. For Mpumalanga cows, the daily production is 25.0 liters, with a standard deviation of 3.2 liters. Assume that lik production for these provinces follow normal distributions. (2 points)
	Tor F We require sample sizes of at least 30 for the sampling distribution of the average daily milk production in both provinces to be approximately Normal.
b)	(8 points) A random sample of 20 <u>Limpopo cows</u> was selected for a study and an average of 31 liters of milk per day was recorded. How many standard deviations is this average away from its population mean?

Version: V1 Name: _______ PUID: ______ 11

Version: V1

C) (10 points) A <u>Mpumalanga farmer</u> has 20 cows. There is a 50% chance each day that the total daily production from this herd is at most how many liters? Justify your answer.

d) (3 points) A Limpopo farmer has 20 cows. What is the probability that the average milk production for this herd exceeds 38 liters a day.

 \bigcirc pnorm((38-27.3)/2.4, lower.tail=FALSE)

 \bigcirc 1-pnorm((38-25)/3.2, lower.tail=TRUE)

© 1-pnorm((38-27.3)/0.5367, lower.tail=TRUE)

Dpt((38-27.3)/0.5367, df=19, lower.tail=FALSE)