.. _chapter5: Chapter 5: Bayesian Inference =============================== .. contents:: Chapter Contents :local: :depth: 2 Overview -------- This chapter covers bayesian inference. Learning Objectives ------------------- Upon completion of this chapter, students will be able to: * Understand the fundamental concepts * Apply computational techniques * Implement methods in Python .. toctree:: :maxdepth: 2 :caption: Sections bayesian_philosophy prior_distributions likelihood_posterior bayesian_updating credible_intervals multiparameter_models numerical_integration mcmc_introduction metropolis_hastings gibbs_sampling convergence_diagnostics posterior_predictive_checks model_comparison